Do not put all eggs
In one container

Dmitry Chuyko

JVM Team

Who we are

Dmitry Chuyko

) @dchuyko

BEUSOFT

Liberica JDK — verified OpenlJDK binary
http://bell-sw.com

N\
Ex-employers S 0111150 10 FREEO0 S
ORACLE

https://twitter.com/dchuyko
https://twitter.com/dchuyko
http://bell-sw.com/

2019. Microservices are in containers I

BEUSOFT WWW.BELL-SW.COM

o0vDY

BEUSOFT

2019. Microservices are in containers

() '\\
%.s- ? . 0 |
hfd.i’ésem‘"_l-' ‘
e &

WWW.BELL-SW.COM

Containers

* Linux containers
— cgroups
— hamespaces
— Isolation

— Resource management dOCker

— Not a virtualization

* Docker images
— Configuration

* Docker tools
— Management
— Monitoring
— Orchestration

BEUSOFT WWW.BELL-SW.COM

Careless processes in containers

I POORED MY I’ANT
b LA

&
Ll

e b s
]

1‘~ ’._""' ;
3

"'I‘f B \/-COM

BIIT TIIA'I' S [[[II[GUF

e

BELUSOF

JVM

* Virtual Machine
— OS process
— Runtime
— JIT/code
— LT

* Expectations from containers
— Configuration
— Test = Prod
— Isolation

* We need Java tools
— Management
— Monitoring
— Debug

BEUSOFT WWW.BELL-SW.COM

JDK 9

* JDK-6515172 Runtime.availableProcessors() ignores
Linux taskset command
* docker —cpuset-cpus

* JDK-8161993 G1 crashes if active_processor_count
changes during startup

* JDK-8170888 Experimental support for cgroup
memory limits in container (ie Docker) environments
¢ _XX:4+UseCGroupMemoryLimitForHeap
* docker --memory

BEUSOFT WWW.BELL-SW.COM

https://bugs.openjdk.java.net/browse/JDK-8170888

JDK 10

* JDK-8146115 Improve docker container detection and resource

configuration usage

*

O R

* JDK-8186248 Allow more flexibility in selecting Heap % of available RAM

-XX:+UseContainerSupport
-XX:ActiveProcessorCount=N
-Xlog:os+container=trace
--cpus --cpu-quota —cpu-period
Deprecate experimental

¢ -XX:InitialRAMPercentage
* -XX:MaxRAMPercentage
¢ -XX:MinRAMPercentage

* JDK-8179498 attach in Linux should be relative to /proc/pid/root and

_Namespace aware
BELSOFT WWW.BELL-SW.COM

https://bugs.openjdk.java.net/browse/JDK-8146115
https://bugs.openjdk.java.net/browse/JDK-8186248
https://bugs.openjdk.java.net/browse/JDK-8179498

JDK 11

JDK-8197867 Update CPU count algorithm when
both cpu shares and quotas are used

¢ _XX:+PreferContainerQuotaForCPUCount
* —-cpu-shares

JDK-8194086 Remove deprecated experimental
flag UseCGroupMemoryLimitForHeap

JDK-8203357 Container Metrics
* -XshowSettings:system

* JDK-8193710 jcmd -l and jps commands do not list
Java processes running in Docker containers

BEUSOFT WWW.BELL-SW.COM

https://bugs.openjdk.java.net/browse/JDK-8197867
https://bugs.openjdk.java.net/browse/JDK-8194086
https://bugs.openjdk.java.net/browse/JDK-8203357
https://bugs.openjdk.java.net/browse/JDK-8193710

JDK 8 (AKA the best release)

* JDK 8 GA. “..none of my business”

* JDK 8u
* Backports from JDK 9
* Backports from JDK 10
* Backports from JDK 11

BEUSOFT WWW.BELL-SW.COM

JDK 8 (AKA the best release)

* JDK 8 GA. “...none of my business” @ mmiysne

* JDK 8u
* Backports from JDK 9
* Backports from JDK 10
* Backports from JDK 11

R e

View More on Instagram

N O QWn

53,416,665 likes

-
BEUSOFT -

WWW.BELL-SW.COM

JDK 12

® JEP 346: Promptly Return Unused Committed Memory from G1
— May help in case of overcommit

JEP 346: Promptly Return Unused Committed Memory from G1

Authors Rodrigo Bruno, Thomas Schatz, Ruslan Synytsky
ner Thomas Schatzl

Type Feature

Scope Implementation

Status Closed/Delivered

»
B
&
2
B

Component hotspot/gc
Discussion hotspot dash gc dash dev at openjdk dot java dot net
M

Reviewed by Mikael Vidstedt, Stefan johansson
Endorsed by Viadimir Kozlov
Created 2018/05/30 14:23
Updated 2019/01/23 14:02
Issue 8204089

Summary
Enhance the G1 garbage collector to automatically return Java heap memory to the operating system when idle.

Non-Goals
= Sharing of committed but empty pages between Java processes. Memory should be returned (uncommitted) to the operating system.
= The process of giving back memory does not need to be frugal with CPU resources, nor does it need to be instantaneous.
= Use of different methods to return memory other than available uncommit of memory.

« Support for other collectors than G1.

Success Metrics
G1 should release unused Java heap memory within a reasonable period of time if there is very low application activity.

Motivation
Currently the G1 garbage collector may not return comitted Java heap memory to the operating system in a timely manner. G1 only returns memory from the Java heap at either a full GC or during a concurrent cycle. Since G1 tries hard to completely avoid full GCs, and only triggers a concurrent cycle based on Java
heap occupancy and allocation activity, it will not return Java heap memory in many cases unless forced to do so externally.

This behavior is particularly disadvantageous in container environments where resources are paid by use. Even during phases where the VM only uses a fraction of its assigned memory resources due to inactivity, G1 will retain all of the Java heap. This results in customers paying for all resources all the time, and
cloud providers not being able to fully utilize their hardware.

If the VM were able to detect phases of Java heap under-util (“idle" phases), and reduce its heap usage during that time, both would benefit.

Shenandoah and Open}9's GenCon collector already provide similar functionality.

Tests with a prototype in Bruno et al., section 5.5, shows that based on the real-world utilization of a Tomcat server that serves HTTP requests during the day, and is mostly idle during the night, this solution can reduce the amount of memory committed by the Java VM by 85%.

Description
To accomplish the goal of returning a maximum amount of memory to the operating system, G1 will, during inactivity of the application, periodically try to continue or trigger a concurrent cycle to determine overall Java heap usage. This will cause it to automatically return unused portions of the Java heap back to the
operating system. Optionally, under user control, a full GC can be performed to maximize the amount of memory returned.
The application is considered inactive, and G1 triggers a periodic garbage collection if both:

« More than G1PeriodicGCInterval milliseconds have passed since any previous garbage collection pause and there is no concurrent cycle in progress at this point. A value of zero indicates that periodic garbage collections to promptly reclaim memory are disabled

= The average one-minute system load value as returned by the getloadavg () call on the JVM host system (e.g. container) is below G1PeriodicGCSystenLoadThreshold. This condition is ignored if G1PeriodicGCSystenLoadThreshold is zero
If either of these conditions is not met, the current prospective periodic garbage collection is cancelled. A periodic garbage collection is reconsidered the next time G1PeriodicGCInterval time passes.
The type of periodic garbage collection is determined by the value of the G1PeriodicGCInvokesConcurrent option: if set, G1 continues or starts a concurrent cycle, otherwise G1 performs a full GC. At the end of either collection, G1 adjusts the current Java heap size, potentially returning memory to the operation
system. The new Java heap size is determined by the existing configuration for adjusting the Java heap size, including but not limited to the MinHeapF reeRat o, the HaxHeapFreeRatio, and minimum and maximum heap size configuration.
By default, G1 starts or continues a concurrent cycle during this periodic garbage collection. This minimizes disruption of the application, but compared to a full collection may ultimately not be able to return as much memory.
Any garbage collection triggered by this mechanism is tagged with the G1 Periodic Collection cause. An example of how such a log could look like is as follows:

(1) [6.084s][debug] [gc, periodic] Checking for periodic GC.

[6.086s] [info][gc] GC(13) Pause Young (Concurrent Start) (61 Periodic Collection) 37M->36M(78M) 1.786ms
(2) [9.687s][debug] [gc, periodic] Checking for periodic GC.
[9.088s] [info]lgc] GC(15) Pause Young (Prepare Mixed) (G1 Periodic Collection) 9M->9M(32M) ©.722ms

BEUSOFT WWW.BELL-SW.COM

https://openjdk.java.net/jeps/346

JDK 13+

* JDK-8199944 Add Container MBean to JMX

* JDK-8203359 Create new events, and adjust existing
events, to account for host/container reporting of
resources

* JMC-5901 Utilize information from the host/container

* JDK-8198715 Investigate adding NUMA container
support to hotspot
¢ —-cpuset-mems

BEUSOFT WWW.BELL-SW.COM

https://bugs.openjdk.java.net/browse/JDK-8199944
https://bugs.openjdk.java.net/browse/JDK-8203359
https://bugs.openjdk.java.net/browse/JMC-5901
https://bugs.openjdk.java.net/browse/JDK-8198715

Service Deployment
Maven

Cl/CD

MGradle
| 4 -
spring Business logic
boot

BEUSOFT WWW.BELL-SW.COM

In memory of one cherished image

Follow v
@nixcraft

@ The Best Linux Blog In the Unixve...

Oracle is forcing @Docker HUB to delete an
image that contains Oracle software such as
JDK, oracle-xe-11g etc.

My image with 10M+ pulls has just gone
(completely removed)
github.com/docker/hub-fee ...

Reddit thread

My image with 10M+ pulls has just gone (completely remov...
Itis a bummer, but | cannot reach Docker Hub team neither via e-
mails, nor via [Docker Hub Feedback

reddit.com

9:50 AM - 22 Jan 2019

114Reweets B3Likes IR PR FJOOPL

Q 19 0 114 8]

@ Tweet your reply
Maulwurf @de_maulwurfg7 - Jan 22 v
Replying to @nixcraft @Docke:

That's hard, but not the biggest surprise after changes to licenses. | remove it
everywhere | can and replace software if needed. We also reject software
companies with software relying on it. Oracle is not trustworthy enough to be
sure software works in 2 vears or is affordable.

Q u 8 =2

BEUSOFT WWW.BELL-SW.COM

BEUSOFT

Base images

https://hub.docker.com/u/bellsoft

JRE 8u222
Debian 227 MB
Centos 307 MB
Alpine 133 MB

Alpine musl
base

JDK 13

227 MB

307 MB

134 MB

39 MB

WWW.BELL-SW.COM

N
~

https://hub.docker.com/u/bellsoft

BEUSOFT

JOCKEICONT? Joinyour peers DockerCon n Son Francico: Aprl 29th - May 2nd. For it

@ dockernub | Q. search for greatcontent (e, mysal

ca-openjdk-debian

What is Liberica?

ooooo

Tags

Usage

Java versions
L2 2
o 18 =k

Linux distribution
— Debian

— CentOS

— Alpine

— Alpine musl

Arch

— x86_64
— ARM64
—ARM32

Base images

WWW.BELL-SW.COM

Demo

D

T I TIER 1 T @

EE@SDFT WWW.BELL-SW.COM

Build alpine-musl image

-

$ mkdir ctx; cd ctx

$ wget https://github.com/bell-sw/Liberica/blob/master/docker/repos/\
liberica-openjdk-alpine-musl/11/Dockerfile

$ docker build . --build-arg LIBERICA_IMAGE_VARIANT=base

.

BEUSOFT

WWW.BELL-SW.COM

https://github.com/bell-sw/Liberica/blob/master/docker/repos/

What happened?

$ docker run -it --rm -v /export/dchuyko/demo:/demo -p 9000:9000 \
-m 5m debian /demo/jdk8u121/bin/java \
-jar /demo/gs-actuator-service-0.1.0.jar

BEUSOFT WWW.BELL-SW.COM

What happened

[S journalctl -f _TRANSPORT=kernel

or

[S docker inspect test -f '{{json .State}}' }

How much memory is enough
* -XX:NativeMemoryTracking=summary

ipS
Al arel

BEUSOFT WWW.BELL-SW.COM

What’s happening?

e N

$ docker run -it --rm -v /export/dchuyko/demo:/demo -p 9000:9000 \

-m 128m debian /demo/jdk8u121/bin/java \
-jar /demo/gs-actuator-service-0.1.0.jar

.

$ jmeter.sh -n -t micro.jmx

EE@SDFT WWW.BELL-SW.COM

What’s happening

Someone is careless
* docker stats

° jstat

* smem, pmap

/ N
% docker run -it --rm -v /export/dchuyko/demo: /demo -p 9000:9000 \

-m 768m --memory-swappiness 0 debian /demo/jdk8ul21/bin/java \

-jar /demo/gs-actuator-service-0.1.0.jar

~NA~A~A~A

- Started HelloWorldApplication in 18.584 seconds (JVM running for 20.425) ﬁ
o /

BEUSOFT WWW.BELL-SW.COM

AOT

//$ docker run -it --rm -v /export/dchuyko/demo:/demo -p 9000:8080 \
: -m 768m --memory-swappiness 0 bellsoft/liberica-openjdk-alpine:11.0.4 java \
-XX:+UnlockDiagnosticVMOptions -XX:+LogTouchedMethods \

-cp /demo/thin.jar:$(cat cpv) hello.HelloWorldApplication

$ jdk-11.0.4/bin/jcmd 35647 VM.print_touched_methods \
| grep -v "35647" | grep -v "#" >methods.log

$ cat methods.log | grep -v SystemModules.hashes | grep -v SystemModules.descriptors \
| tr -d ":' | awk -F "(" ‘'"{gsub(/\//,".",$1);print $1"("$2}"' \
| awk -F ")" '{gsub(/\//,".",$2);print "compileOnly "$1")"$2}' >methods.list

$ docker run -it --rm -v /export/dchuyko/demo:/demo -m 768m --memory-swappiness 0 \
bellsoft/liberica-openjdk-alpine:11.0.4 jaotc \
--compile-commands /demo/methods.list --jar $(cat cpv) \
\\\ --info --ignore-errors --output /demo/thin.so

cpv — classpath in container. Startup is not faster.

BE@SDFT WWW.BELL-SW.COM

AppCDS

//$ docker run -it --rm -v /export/dchuyko/demo:/demo -p 9000:8080 \ \\\
/ -m 384m --memory-swappiness 0 bellsoft/liberica-openjdk-alpine:11.0.4 \ |
java -XX:DumpLoadedClassList=/demo/hello-ext.classlist \

-cp /demo/thin.jar:$(cat cpv) hello.HelloWorldApplication

$ docker run -it --rm -v /export/dchuyko/demo:/demo -p 9000:8080 \
-m 384m --memory-swappiness 0 bellsoft/liberica-openjdk-alpine:11.0.4 \
java -Xshare:dump -XX:SharedClassListFile=/demo/hello-ext.classlist \
-XX:SharedArchiveFile=/demo/hello-ext.jsa \
-cp /demo/thin.jar:$(cat cpv) hello.HelloWorldApplication

$ docker run -it --rm -v /export/dchuyko/demo:/demo -p 9000:8080 \
-m 256m --memory-swappiness 0 bellsoft/liberica-openjdk-alpine:11.0.4 \
\ java -Xshare:on -XX:SharedArchiveFile=/demo/hello-ext.jsa \
\\\ -cp /demo/thin.jar:$(cat cpv) hello.HelloWorldApplication %

cpv — classpath in container.

BE@SDFT WWW.BELL-SW.COM

Startup & footprint improvements

/
/

$ docker run -it --rm -v /export/dchuyko/demo:/demo -p 9000:8080 \

+6 -m 128m --memory-swappiness 0 bellsoft/liberica-openjdk-alpine:11.0.4 \
java -XX:TieredStopAtLevel=1 \
-Xshare:on -XX:SharedArchiveFile=/demo/hello-ext.jsa \
-cp /demo/thin.jar:$(cat cpv) hello.HelloWorldApplication

~NA~A~A~A

Started HelloWorldApplication in 7.3 onds (JVM running for 8.283) X2.5
_ %

BEUSOFT WWW.BELL-SW.COM

o0vDY

BEUSOFT

Summary

Java works in containers and knows the limits

Container diagnostics works for Java

Java diagnostics works for containers

All JVM features work in container

— Use similar environment to generate things in
advance

Use latest releases and updates

— Security

— Effectiveness

Choose base image wisely

Help your services

— Prevent failures

— Limit and decrease footprint

— Shorten startup

WWW.BELL-SW.COM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

